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ABSTRACT

Understanding relational datasets at a high level is a com-
mon data mining task and the detection and classification of
community structure is one of the foremost algorithmic chal-
lenges of data science. A common approach is to model a
dataset with a graph and to use the arsenal of graph mining
methods to describe the properties of the data and find de-
sired structure. This arsenal includes many numerical linear
algebra techniques. A well-known approach is to calculate
a few eigenpairs of a matrix associated with the graph and
use the information in the eigenvalues and eigenvectors to
find diverse properties of the graph. Often these eigenpairs
guide graph optimization processes to more efficient near-
optimal solution. For small and quasi-regular graphs, the
choice from the buffet of graph-associated matrices is often
unimportant as the performance of the technique may not
depend much on which graph matrix is employed. However,
in large graphs with highly skewed degree distribution, there
are several important considerations in this choice. The cal-
culation cost of finding the eigenvectors and the properties
that are determined from these eigenvectors both differ dra-
matically depending which matrix and set of eigenvectors
you choose.

We present maximum principles and decay rates demon-
strating, for scale-free graphs, the extremal eigenvectors of
adjacency matrices are fundamentally different than those
related to Laplacian matrices. The results suggest that ad-
jacency eigenpairs could be effectively used to detect com-
munity structure of a given density involving many medium-
to-high-degree vertices, but that their use is likely inappro-
priate for locating community structure in the low-degree
portions of graphs.
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1. INTRODUCTION

Assume we seek understanding of the topological struc-
ture of a large set of relational data. One of the most
common types of topological structure sought is community
structure, where relatively many connections exist between
a small subset of the vertices. The relational data is typically
modeled with a graph, G, a collection of m edges between n
vertices, and graph algorithms are utilized to partition the
graph into subsets, each ideally having many internal con-
nections and few external connections. A commonly utilized
and studied approach to accomplish this is using the eigen-
vectors of a graph-associated matriz, which is either sparse
with structure related to the graph or a sparse matrix with
a low-rank correction. There are several choices of which
matrix to use (and hence which eigenvectors). The common
sparse matrices are the adjacency matrix [4], combinatorial
graph Laplacian [6], normalized graph Laplacian [3], or sign-
less Laplacian [10, 5], while the modularity matrix represents
a low-rank correction to the adjacency matrix [11] as does
matrix centering that is common in principal component
analysis [9]. Given some properties of sought communities
it is extremely useful to know which eigenvectors are most
likely to detect the structure type of interest, and much is
known already. For example, it is well-known that near-
bipartite communities are more easily detected with eigen-
vectors associated with the smallest eigenvalues of the sign-
less graph Laplacian [10, 5] (alternatively, the most negative
eigenvalues of the adjacency matrix, or largest eigenvalues of
the normalized graph Laplacian). On the other hand, tradi-
tional community structure is often detected using eigenvec-
tors associated with the smallest nonzero eigenvalues of the
combinatorial graph Laplacian (alternatively, the most posi-
tive eigenvalues of the adjacency matrix, or smallest nonzero
eigenvalues of the normalized graph Laplacian). In this work
we demonstrate some fundamental properties of adjacency
eigenvectors for graphs with one vertex of very high degree,
namely the energy in these vectors is highly concentrated
near the medium to medium-high-degree vertices and are
fairly insensitive to prevalent community structure in the
low-degree vertices. Our larger goal is to make strides in
understanding the eigenspaces of all graph-associated ma-
trices so that we can more effectively aim for certain types
of diverse community structure of different type and size.

The eigenvectors of graph-associated matrices also play a
critical role in the application and analysis of all numerical
linear algebra techniques that one could potentially apply
to a graph-associated matrix. The analysis of methods that



solve linear systems using preconditioned iterative solvers
rely on understanding approximation properties of combina-
tions of certain eigenvectors. Approaches involving nonlin-
ear systems and constrained optimization also benefit from
understanding of the underlying eigenspaces of linearized
operators. Reliably knowing how the quality of a numerical
solution is related to the quality of a sought graph property
is also of high interest. HPC eigensolvers (e.g. Anasazi [1],
SLEPc [7]) have been developed for large-scale physics simu-
lation, and the properties of eigenspaces related to scale-free
graphs described in this paper need to be considered when
using such software for data mining purposes. Our long term
goal is to better characterize the properties of eigenpairs of
the various data matrices that data miners employ, to fur-
ther the understanding of the capabilities and limitations of
associated with each numerical linear algebra technique and
related software.

When G is quasi-reqular, meaning the vertices in G all
connect to roughly the same number of other vertices, the
choice of which matrix used for finding traditional commu-
nity structure may not matter much. In this paper, we focus
on describing properties of the eigenvectors associated with
the most positive and negative eigenvalues of adjacency ma-
trices related to so called scale-free graphs. Many graphs
associated with real-world data are scale-free, characterized
by a skewed degree distribution: a few vertices of extremely
high degree (perhaps O(n)), many vertices of intermediate
degree, and very many vertices of low degree (perhaps as
low as one or two). We demonstrate, through use of local
analysis, that a skewed degree distribution implies strong
conditions on the adjacency eigenvectors, suggesting what
type of structure can be found robustly with these eigen-
vectors, and what type cannot. The extremal eigenvalues
and associated eigenvectors are strongly influenced by the
structure surrounding the few vertices of high-degree and
medium-high-degree community structure, while being in-
sensitive to community structure involving vertices of low-
to medium- degree, even in cases where this is the dominate
form of community structure present.

The extremal adjacency eigenvectors are excellent at lo-
cating areas of high edge density, the portions of G where the
combinatorial explosion of the number of paths of a given
length is most extreme. In this sense of density, a large hub
is often quite dense, with or without the presence of any
community structure.

In [14] and [17], the authors make a curious discovery
regarding the extremal adjacency eigenpairs of scale-free
graphs. For each vertex in the graph, they build what we
refer to as a spectral coordinate, a K-dimensional coordinate
consisting of the eigenvector values at vertex i for the K ex-
tremal eigenpairs (similar to what is commonly done in prin-
cipal component analysis [9]). Often for real world graphs,
these spectral coordinates make up surprisingly simple struc-
ture: O(K) rays emanating from the origin. Sometimes,
theses rays are also almost perfectly aligned with the coor-
dinate axes in K-dimensions. These authors demonstrate
that most extreme portions of these lines are often related
to tightly-knit structure within the graph and suggest that
grouping vertices with their associated line will reveal some
communities of the graph. In [16], some theoretical work is
done to explain one situation where these occur, when the
adjacency matrix is well-approximated by a block diagonal
matrix. Interestingly, they also provide some perturbation

theory connecting the angle of a ray from the coordinate
axes and the size of the perturbation from block diagonal.
We observe that this is not the only situation where the rays
exist, and they commonly arise from having a few vertices
of extraordinarily high-degree, possibly with little commu-
nity structure and large number of off-block-diagonal entries.
Extensions of the results in [16] that analyze high powers of
adjacency matrices as perturbations of real-valued, block-
diagonal matrices are likely to completely explain the rays’
angles from the coordinate axes. In Section 2, the maximum
principle we present provides an explanation for what types
of vertices possibly show up at the tip of these rays. The
decay rates demonstrate which vertices have spectral coor-
dinates positioned along the ray and which vertices have
coordinates near the origin.

1.1 Adjacency Eigenpairs

Here, we describe the adjacency matrix, its associated
eigenpairs, most of the notation necessary throughout the
rest of the paper, and few well- and lesser-known simple
results demonstrating that the few extremal eigenvalues of
the adjacency matrix are dependent on the graph structure
around high-degree nodes and not the low-degree portions.
We make use of these spectral bounds in the discussion of the
results in Section 2, where we demonstrate that most low-
degree vertices are poorly represented by these eigenvectors
as well.

A relational dataset may be modeled by graph G(V,€)
with n := [V| vertices and m := |€| edges. We focus on
undirected graphs, where (i,7) € £ if and only if (j,7) € €&,
which are considerably easier for analysis and application
of numerical linear algebra techniques due to the symmetry
properties of the associated matrices. We assume the graph
is connected, or any pair vertices can be connected by a
sequence of edges where each pair of successive edges share
an intermediate vertex. Also, we assume the graph has no
self-loops, (i,1) € E.

The degree of vertex i € V, written d;, is the number of
edges incident to ¢. For convenience, we order the vertices
by the degree in descending order, so that di = dyas is the
largest degree and d, = dmin is the smallest. The degree
matriz, D € R™*™, is a diagonal matrix with D;; = d;.
For large scale-free graphs, often dmqes is several orders of
magnitude higher than d,.;n. Throughout the paper, we
assume d,, is very small (one or two) and d; is very large (a
significant fraction of n) as is the case for many large, scale-
free graphs of interest. Let N; be the graph neighborhood of
i, or all vertices j such that (i,7) € £, and note ¢ € N; due
to assumption that no self loops exist. We have |N;| = d;.

For ease of explanation we consider unweighted graphs,
where each edge has equal weight of 1. The results in this
paper easily extend to weighted graphs with skewed degree
(density) distribution, where degree is redefined to be the
sum of incident edge weights. The unweighted adjacency
matriz, A € R"*™ | is a binary matrix that has A;; = 1 if
(i,7) € € and A;; = 0 otherwise. We have A = A’, due to
the graph being undirected. In this work, we focus on dis-
cussing the features of A, yet we briefly discuss fundamental
differences with other common matrices.

Consider using numerical solution of the following eigen-
problem for data mining tasks,

AWk = Aka



for K of the eigenpairs (Ak, i), which consist of eigenval-
ues , A\ € R, and their associated eigenvectors wi € R™.
Recall that the symmetry of A implies the eigenpairs are
real-valued. The spectrum of A, written o(A), is the set of
all eigenvalues of A, which has n or fewer members. An
eigenvalue is simple if it is associated with a one dimen-
sional space of eigenvectors and non-simple if it associated
with a higher dimensional eigenspace (spanned by two or
more linearly independent eigenvectors associated with the
same eigenvalue). We write wgk) for the individual entries
in Wik.

We order the eigenvalues in o(A) in decreasing order and
typically consider computing the K extremal eigenvalues,

{)\1,--~)\K17)\n—K2+1,~--7An}, for }-('14»}-(2:}(7 (1)

and their associated eigenvectors. The sign and magnitude
of these eigenvalues is important in our discussion in the
following section, so we describe some basic results. Peron-
Frobenius theory and the connectedness of the graph implies
spectral radius has properties p(A) = Ay > 0 and is a sim-
ple eigenvalue and an eigenvector, wi, associated with A;
is all of one sign, wgl)wj(-l) > 0 for any two i,5 € V. We
know A, < —1 based on A\, < (A4x,x)/(x,x), where x is
vector with a +1 in the i-th slot and a —1 in the j-th slot
for any edge (4,7). Additionally, if the graph is not bipar-
tite (not two-cyclic) we also have A, > —p(A), and is not
guaranteed simple, otherwise A, = —p(A) and is guaran-
teed simple. Eigenvectors associated with A, are opposite
sign across many edges, or for (i,j) € £ quantity w!™w!™
tends to be negative. This property cannot hold at every
edge around an odd cycle, yet for the purely bipartite case
it does hold for all edges in the graph. The singular values
of A are related to its eigenvalues in the following way: for
each A € o(A), there exists u = |A| € o(vV/A2?). We order
ik > e+ and note that py is not necessarily |Ag| (i.e. the
most negative eigenvalues are related to some fairly positive
singular values).

There is a large body of work regarding the spectral ra-
dius of A [4]. We focus on the case of a highly-skewed de-
gree distribution, and develop new eigenvalue bounds for the
most positive several eigenvalues. These are not the tightest
bounds possible, yet are fairly simple to prove and clearly
argue that these eigenvalues are related to the structure sur-
rounding high-degree nodes.

Using fundamental matrix theory, we have several results
that relate the extremal eigenvalues to the degrees in the
degree distribution. First, by Gershgorin’s theorem [8] we
know o(A) € [—dmaz, dmaz]- Next applying Schur majoriza-
tion to A%, and noting that diag(A?) = diag(D), we have a
series of inequalities on the singular values of A,

K
de <
k=1 k

in turn, implying that the magnitudes of the most extremal
eigenvalues are, on average, bounded below by the square
root of the several highest degrees. We spend the rest of
this section demonstrating bounds that are related to (2),
yet are related to individual most positive eigenvalues, and
in regard to graphs with highly-skewed degree distribution.

For K = 1, we have \; > Vd;. So, in general, \; €
[Vdmaz, dmaz]. We can show that the lower bound is im-
proved if the neighborhood of a high-degree vertex is highly

K

i, (2)
1

connected.
Let G;(V;, &) be the induced subgraph of a vertex and its
neighborhood. Formally,

Vi = {i}UN;, and E:={(,k)€Es. t. j,keV}.

Let t; = |&] — di be the number of triangles that vertex ¢
participates in and note ¢; € [0, %(di —1)].

Lemma 1.1.

> y
p(A) > IZI}EEB( f(di, ti),

where for each d; > 1, f(d;,t) is a monotonically increasing
function in t € (0, % (d; — 1)) such that

f(di,0)=~d; and f (di, @) = d,.

ProoF. Pick any i € V. Let z; = 1, x; = a for any vertex
jE€N;and z; =0 for j € V;. Let S; contain all vectors that
are zero in V \ V; and note that x € S;, independent of a.
Then, for any a € R, we have the bound

Az, z)
A > {Az,z)
pA) =z Eech (z,2z)
(Ax,x)  2d;a+ 2t;a’
(x,x) 1+ d;a?

We define

2dia + 2tia2

di, t;) = _

Fldi; ti) ek 1t da?
where the maximum occurs at

) ti 21
a(dutz‘):zdg-i- 4d4+di~’

One can verify that f(d;,0) = \/ds, f(di, % (di—1)) = d; and
f(d;, t) is monotonically increasing for ¢ € (0, %(di -1)). O

Lemma 1.1 is tightened a bit by setting x as the eigenvec-
tor associated with the maximal eigenvalue of the adjacency
matrix associated with G;, but we present this alternative
form because it facilitates our discussion. In the case that
the maximizing vertex is a hub of degree dy,q, With no tri-
angles, this bound is the same as before, A\1 > v/dmaz. The
bound is increased if there are more triangles. In the case
where G contains a clique of size (d + 1) with d > Vdmax
exists, we have a new bound, \; > d.

Additionally, we can derive a series of bounds for the most
positive eigenvalues based on the structure surrounding ver-
tices of largest degree.

Theorem 1.1. Let 7, = {i1,i2,...,ix} be any set of k
vertices that are 3 hops or greater from each other (an inde-
pendent set in the two-step graph). Then,

Ar > max {minf(di,ti)} ,

I, |i€Zy

where for each d; > 1, f(ds,t) is a monotonically increasing
function in t € (0, %(di — 1)) such that

f(di,0) =Vdi  and  f (di, w> —d;.



Proor. For each i € Zj, build a vector x; that nonzero
only in V;, has a 1 at vertex i, and a at every vertex j €
N, with a chosen to give the highest Rayleigh Quotient as
possible (as in Lemma 1.1). Let Sk be the subspace spanned
by x; for each i € T,. Note that xix; = 0 for i,j € Zy, with
i # j, due to each vertex in Zx being 3-hops apart. Set

Xi Xiy Xig

Pr, =
oLl ka2 a2 ]

with the subscript Z) dropped for terseness, P := Pr,. We
see PTP = I and PT AP is a diagonal matrix with f(d;, ;)
as a diagonal entry for each ¢ € Zj. Using the Courant-
Freidrich-Weyl Theorem [8], we have

L o xlAx
A = max min —,
dim(s)=k x€S X'X
x! Ax

> max min
S, x€8, xix
ax mi y'PAPy
= max min ~————
Ir yerk y'P'Py
= max {minf(di,ti)] .

I, |i€Zy

a

When the K highest-degree vertices are all 3 hops away
from each other, then we know A\ > V/di for k=1,2, ..., K,
and these bounds only increase when these vertices are in-
volved in many triangles. Practically, a series of bounds
related to Theorem 1.1 can be produced by sequentially
cutting out neighborhoods of the graph and finding (or es-
timating) the largest eigenvalues of the adjacency matrices
associated with the subgraphs.

Similar results can be obtained for bounding most nega-
tive eigenvalues from above, however the extra connectivity
in each G; makes the bounds weaken (i.e. they increase).

The K extremal eigenvalues are typically highly depen-
dent on the vertices of highest degree and the structure sur-
rounding these vertices. Commonly, there are several eigen-
values that are at least the square-root of the maximal de-
grees. In the next section, we demonstrate that the size of
these eigenvalues implies degree-related maximum principles
and decay rates for the associated eigenvectors.

2. LOCAL ANALYSIS OF
SPECTRAL COORDINATES

The spectral techniques we describe are a simple class of
graph embedding techniques from constrained optimization.
For each set of extremal eigenpairs of a graph-associated
matrix, one can write down a set of constraints and an op-
timization principal related to the graph structure, which
the eigenvectors feasibly optimize. Computationally, these
constrained optimization problems are attractive, as high-
quality eigensolver packages can be employed. However,
several desired features of the embedding are not explicitly
provided for in the constraints, nor are they weakly enforced
in the optimization functional. Here, we describe this situ-
ation for adjacency eigenpairs in the context of graphs with
skewed degree distribution and analyze some of the basic
features of these eigenpairs using the local relationships im-
plied by the eigenequation, Aw = Aw.

We make use of the block representation of K eigenvec-
tors,

AW = WA, (3)

where A € R¥*¥ is a diagonal matrix of the eigenvalues
from (1) and the columns of W € R™ ¥ are associated
eigenvectors. Again, by symmetry of A, we may assume
W is orthogonal, implying W'W = I and WW?" is a pro-
jection onto range(W). Note that wgk) = Wii, wi, = Wey,
where ey, is a cardinal vector in RK, and the ¢-th row of W is
Wte;, where e; € R™. Vector W'e; is a subset of the Fourier
coefficients of vertex ¢ with respect to the eigenspaces of A.
This an embedding from V to R, which we call the spectral
coordinates of ¢ with respect to W, or briefly, spectral co-
ordinates, when the eigenvectors we refer to are clear from
context. Ideally distances and angles between sets of spec-
tral coordinates Wte; and Wtej help us organize the vertices
in an efficient manner using clustering processes or classifiers
on these low-dimensional datapoints.

The eigenvectors associated with the most positive eigen-
values maximize

trace(W'AW) subject to W'W = I. (4)

The optimization function can be rewritten as dot product
of spectral coordinates across each edge, trace(W'AW) =

K K
(k) (k) _ (k) (k) _

> 2 wlu = 3 Y el ul -

k=1 (i,j)€E (i,§)€E k=1

> (e (We;),

(i,5)€E

Thus, hueristically, maximizing (4) attempts to place the
spectral coordinates of the pair of vertices incident to each
edge close in angle and far from the origin. We rewrite

Yo Wre)' (Wrey) =) [Wreill Y [W'e;l|Ciy,
=1

(i,7)€E JEN;

where C;; € [—1,1] is the cosine of the angle between W'e;
and W'e; in R¥. One sees that there is much to be gained
by placing the high-degree vertices far from the origin and
having the vertices in their neighborhood have the same an-
gle, which is a manifestation of some of the properties ob-
served in [14, 16].

The column-orthogonality constraint W*'W = I normal-
izes the spectral coordinates, while ensuring that +wjy in all
K columns is not a feasible solution (which would put all
spectral coordinates on a line through the origin). The con-
straint distributes the spectral coordinates throughout R¥,
although the distribution is often quite poor for scale-free
graphs, having a mass near the origin and a few outliers
along rays.

The full topology of the graph is required to know exactly
where the spectral coordinates lie. However, we demonstrate
for adjacency eigenpairs that much is known about the mag-
nitude of spectral coordinates based on approximate eigen-
values and on additional local information, such as a vertex
degree and the average degree of the vertices in its neigh-
borhood.

Theorem 2.1. (Local Analysis for Adjacency Eigen-
pairs) Let W and A represent K eigenpairs of A with no



zero eigenvalues. Then,

Wie, = dA™* % > Wey (5)

b jEN;

PROOF. Starting from Equation (3) and noting that A
and A are symmetric, gives W'A = AW?*. Then,

AWtei = WtAei = Wt Z €
JEN;
1 t
= di LT Z w €e;
L jEN;

No zero eigenvalue is included in the partial eigendecompo-
sition, so A is nonsingular and the result follows. [

This degree-dependent relationship between W'e; and the
centroid of the spectral coordinates in N; is used to demon-
strate a maximum principle and simple bounds on rates of
decay as we move away from the maximum.

Theorem 2.2. Let (Mg, Wg) be eigenpairs of A with Ay #
0. We have the following results.

(i) (Local Maximum Principle) If vertez i is such that
lw®| > |w§k)| for any j € N, then d; > |\i|. More-
over, if k =1, we have d; > vV/dmax-

(i) (Low-Degree Periphery Decay) Let Sé“ be the set
of all vertices q such that dg > &|Ak| for € € (0,1).
Assume j & Se is at least s hops from Sg. Then

(k)| < g5 (k)
0] < ¢ maxwlf.

PRrOOF. First we prove (i). Looking at the k-th coordi-
nate in Equation (5), we see

(y_ di |1 ®| o di (k)
lw; ™| = x| d; ij Sm %%'wj )
JEN;

If |w§k)| > \w§-k)| for any j € N, then d; > |Ax| holds. For
k =1, we consider Equation 2 to see d; > Vdmaz-

For (ii), note that a global extrema must also be a local
extrema. By (i), the vertex that maximizes the quantity

lw$¥)| must be contained in SE for any ¢ € (0,1). Let RE
be the set of vertices at least s hops away from Sé“. Note that
Sé“ u R’gyl = V. Also, for any s > 1, we have Sé“ Al Rgs =0
and R’gys D ng,s-u- For s =1, we see

k d; 1 k
max [w”| < ﬁ = jwp”|
]ERE,I k j PEN;
< i max |wi | < & max |w® |
= Dkl ey P T pev TP

For j € ”R’g,s, we have N, C Rgs,l. Using induction on

s=2,3,...,
(k) 4 (1 (k)
max |w:"’| < — | — |wy ™|
A PV
< 4 max  [w| < & max [wl?),
|)\k| pEngys_l pEV

and we have the result. [

Remark 2.1. (Discussion of Theorem 2.2 for scale-
free graphs) We use these results to continue the discus-
sion about what types of graph structure are detected using
the techniques in [14, 16]. For spectral coordinates associ-
ated with extremal adjacency eigenpairs, our results demon-
strate the properties listed below.

e TIPS OF THE RAYS. Theorem 2.2(i) demonstrates that
the tip of a ray (an eigenspoke) must be at a vertex i
such that d; > |Xg|. If a sought community does not
have a vertex with this property, then it will not be seen
as the tip of the associated ray, even if this community
is a clique.

e HIGH-DENSITY STRUCTURE. The largest hubs, net-
works of medium-size hubs, large communities, and the
vertices in the highest core numbers [2] tend to take on
large magnitude spectral coordinates.

e COMMUNITIES IN THE LOW-DEGREE PERIPHERY. The-
orem 2.2(it) shows that if sought communities are made
up of low-degree vertices are a few hops away from
high-degree vertices then their spectral coordinates are
close to the origin.

e RATE OF DECAY. The result in Theorem 2.2 (ii) is the
simplest to prove, as a tighter bound would account for
the fact that much of each vertex’s neighborhood is at
least as far from Sé“ as the vertez itself (and most of the
vertices in R'g,s have much smaller degree than &|Ax|
for a scale-free graph). The rate of decay is often much
faster as one moves away from the mazimum value.

e NUMBER OF HOPS. Due to the small-world nature of
many scale-free graphs, power s may not be very large
for much of the graph (common examples place the av-
erage shortest path in the range of 6 to 20 [12]).

2.1 Local Analysis for Other Common Graph-
Associated Matrices

We briefly demonstrate the difference regarding local anal-
ysis of other common graph-associated matrices. These dif-
ferences play important role in how one uses various graph
matrices for data mining and how one might solve linear
algebra problems involving graph matrices. We introduce
some notation to describe the eigenpairs of various matri-
ces. For matrix M € R™"*™, we consider the following block
eigendecomposition MV (M) = V(M) O(M), where V(M) €
R™ ¥ is an orthogonalized collection of K eigenvectors of M
and O(M) is a K x K diagonal matrix with the associated
eigenvalues on the diagonal. When clear which matrix we
mean from context, we merely use V and ©.
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Figure 1: Magnitude for eigenvectors associated with the 1°* and 5" most positive eigenvalues for pattachi,
c=11and N = 250 . The vertices from the graph generator are ordered by level (distance from the initial hub),
as indicated by the vertical gray lines, and the vertices associated with the community structure are listed
last. Red dots represent values associated with community structure. On the left, a decay bound of order

(2/|)\1|)leve1 is plotted to demonstrate that the decay is exponential and related to the size of the eigenvalue,
as Theorem 2.2(ii) suggests. On the right we see that the 11-cliques are large enough to be maximums for

the fifth eigenvalue, as determined in Theorem 2.2(i).

2.1.1 Low-Rank Corrections

Low-rank corrections to A are commonly used in cases of
highly-skewed degree distribution. The modularity matriz,
B =A— ﬁddt, where d is the vector with d; in the i-
th slot is one example of this. If A, is a rank-r update
to A, the Cauchy Interlacing Theorem [8], implies that the
k-th eigenvalue of A, is bounded below by the (k + r)-th
of A. Therefore, for scale-free graphs, the most positive
eigenvalues are still related to the high-degree vertices and
their surroundings. Specifically for B, we see a similar result
as Theorem 2.1, allowing us to understand the capabilities
associated with the different geometry that these spectral
coordinates introduce.

Corollary 2.1. (Modularity Matrix) Let V = V(B)
and © = O(B) represent K eigenpairs of B with no zero
etgenvalue.

1
Vtei = di971 CT Z Vtej —C
b IEN;

where vector ¢ € RE is independent of i, and related to a
degree-weighted average of all spectral coordinates,

1 < .

PROOF.
OV'e; = V'Be;=V"' (Ae,' - iddfei)
2m

t t d; - t

G)Vei = ZVej—%ZdjVej
JEN; j=1
t -1 1 t 1 t
Vei = dle EZVGj—%Zdjvej
JEN; j=1

O

There is still a degree-dependent scale factor present, but
the maximum principles and decay properties are quite dif-
ferent. This introduces an interesting geometry, and com-
puting c provides an advantage in understanding these spec-
tral coordinates. Similar derivations are illustrative for other
centered matrices.

2.1.2 Common Laplacian Matrices

The local analysis of spectral coordinates associated with
the combinatorial Laplacian, L = D — A, and the signless
Laplacian, Ls = D + A, demonstrates a fundamental differ-
ence in the degree-dependence. For small, non-zero eigen-
values less than 1, the associated spectral coordinate of a
vertex 4 is mapped further away from the origin than the
centroid of the spectral coordinates in N;. The smaller d;
is, the further away i’s spectral coordinate is from the ori-
gin than the centroid (relatively). Therefore the locations
of maximums and the decay properties of these spectral co-
ordinates are quite different than those associated with A,
tending to map vertices in less-dense parts of the graph fur-
ther away from the origin.

Corollary 2.2. (Combinatorial Graph Laplacian) Let
V =V(L) and © = ©(L) represent K eigenpairs of L with
no eigenvalue equal to d;.

: 1.\ [1 :
Vie; = I_E EZVej

JEN;

If ©(L) has eigenvalues that are all fairly close, then vertex
i’s spectral coordinate associated with L ends up in nearly
the same direction as the centroid of the coordinates corre-
sponding to N;, whereas the direction is almost the opposite
in the case of L. In the presence of many odd cycles, this
is accomplished by having the spectral coordinates mapped
close to the origin.
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Figure 2: Magnitude for eigenvectors associated with the 1°* and 5" most positive eigenvalues for pattach2,
¢ =16 and N = 167 . The vertices from the graph generator are ordered by level (distance from the initial
hub), as indicated by the vertical gray lines, and the vertices associated with the community structure are
listed last. Red dots represent values associated with community structure. On the left, we see exponential
decay as we move away from the vertex of maximal degree. On the right we see that the 15-cliques are large
enough to be maximums for the fifth eigenvalue, as determined in Theorem 2.2(i).

Corollary 2.3. (Signless Graph Laplacian) Let V =
V(Ls) and © = ©(Ly) represent K eigenpairs of Ls with no
etgenvalue equal to d;.

-1
Vie; = — (I— %@) % D> Ve

" EN;

One might consider using the high eigenvalues of L and
asssociated eigenvectors to find near bipartite structure within
a scale-free graph, or the low eigenvalues of Ls and asso-
ciated eigenvectors to find community structure, due to al-
most guaranteed rapid convergence of the eigensolver (due to
large gaps in the corresponding spectra). The previous two
results demonstrate important considerations in this ven-
ture. In both cases, using the techniques in Theorem 2.2,
we can demonstrate maximum principles centered around
high-degree vertices and extremely rapid decay for the vec-
tors associated with the largest eigenvalues of L and Ls. The
situation is typically much more severe than the extremal
adjacency eigenvectors.

Lastly we demonstrate degree-scaled spectral coordinates
related to small nonzero eigenvalues of the normalized Lapla-
cian L = I — D=Y2AD~1/? which could be thought of as
a multiplicative correction to A, have no degree-dependent
relationship to the centroid of the (similarly scaled) spectral
coordinates associated with vertices in N;.

Corollary 2.4. (Normalized Graph Laplacian) Let
V = V(Ls) and © = O(Ls) represent K eigenpairs of Ls
with no eigenvalue equal to d;.

VD ?e; = (I-0)" % > VIDTV e
v EN;
Recall o(L) € [0,2]. Spectral coordiantes associated with
eigenvalues near zero are close in direction to the local cen-
troid, whereas the spectral coordinates associated with eigen-
values near 2 are oppposite in direction as the local centroid.

Note that the DAfl/QV associated with the smallest non-zero
eigenvalues of L can easily be shown to be the eigenvectors
associated with the most positive eigenvalues of AD™!, the
stochastic propagation operator.

3. NUMERICAL RESULTS
3.1 Synthetic Graphs

To demonstrate the decay rates and community resolution
properties of extremal eigenvectors of A, we embed cliques
of various size into graphs from scale-free graph generators
that yield graphs with very little community structure. We
initialize the graph generator with a small star (a single hub
vertex attached to 9 vertices) and then use preferential at-
tachment [15] to introduce new vertices, one at a time, by
connecting them to existing vertices with probability pro-
portional to their degree, until we have 25 thousand ver-
tices. The initial hub is highly likely to be the vertex of
highest degree when the generation process is complete. As
a graph is generated we keep track of each vertice’s level,
or distance from the initial hub vertex, and we use level
to order vertices to display the decay properties of extremal
eigenvectors. We use two different versions of this generator,
pattachl and pattach2, where each new vertex connects to
one or two existing edges, respectively. A graph that is gen-
erated by such processed has scale-free degree distribution
and is reasonably small in diameter, yet virtually no com-
munity structure. Process pattachl generates a tree, and
pattach2 generates a graph that is the union of two trees
and short cycles are not extremely likely.

After a preferential attachment graph is generated, we at-
tach significant community structure to the vertices furthest
away from the initial hub. Specifically, we attach N cliques
of size ¢, each by a single high-level vertex in the generated
graph, with N chosen so that roughly 10% of vertices in
the final graph are involved in a c-clique. We vary the size
of ¢, recalculate the top several eigenpairs, and investigate
the properties of the eigenvalues and associated eigenvectors.
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Figure 3: Decay and sparsity plots for real-world example, amazon0312.

With this model, we generally observe that when ¢ << |Ag|
the k-th eigenvalue is insensitive to the presence of the com-
munity structure. Tables 1 and 2 provide a few examples of
this phenomenon for pattachl and pattach2 and show how
related the eigenvalues are to the square roots of the largest
degree.

Additionally, we observe that the clique is only visible to
vy, if the degree of its members is (¢ — 1) = |Ax| or larger.
We list several examples for pattachl. With ¢ = 6, N =
500, we do not see the community structure in the extremal
adjacency eigenvectors until the eigenvector related to the
77" right-most eigenvalue. For ¢ = 8, N = 358, we see
the community structure with the 31%% eigenpair, for ¢ =
11, N = 250, the 5" eigenpair, and for ¢ = 19, N = 139, the
community structure is present in the right-most eigenpair.
We have a similar list related to pattach2. For ¢ = 6, N =
11, we see no community structure in the 100 right-most
eigenpairs. For ¢ = 8, N = 358, we see community structure
in the 70" eigenpair, for ¢ = 11, N = 250, the 19*", for
¢ =16, N = 167, the 5", and for ¢ = 22, N = 109, we see
the structure in the 1°*. We would need to dig deeper into
the spectrum if the community structure were less strong
than an clique.

For pattachl with ¢ = 11 and N = 250, the left-hand side
of Figure 1 demonstrates the exponential decay of the eigen-
vector associated with the largest eigenvalue of A, as de-
scribed in Theorem 2.2(ii). In right-hand side of Figure 1 the
the eigenvector associated with the fifth most positive eigen-
value of each adjacency matrix is plotted, where the max-
imum is obtained on a vertex involved in a clique. This is
possible because (¢c—1) & |\s| and the requirement imposed
on a vertex that is a local maximum from Theorem 2.2(i)
is satisfied. Figure 2 displays the analogous results for pat-
tach2 with ¢ = 16 and N = 167.

3.2 A Real-World Graph

We study amazon0312, the undirected version of an ama-
zon product co-purchasing network we downloaded from the
SNAP collection [13], which was built by crawling ama-
zon.com on March 12", 2003. Vertices represent products
for sale on the website. An edge exists between two products
i and j if producti is deemed as frequently bought by the
same set of users that bought product j, or vice versa. No
self-loops are allowed in the adjacency matrix we use. The

k N c=0, Mg c=0, Apy1—k

1 | +17.8606 | +17.9994 -17.9994

2 | +12.6886 | +12.9172 -12.9172

3| +11.9583 | +12.1465 -12.1465

4 | +10.7238 | +10.7443 -10.7443

5 | +10.4881 | +10.4183 -10.4183

k \/CTk Cc = 11, Ak Cc = 11, An+17k

1| +17.8606 | +17.9994 -17.9994

2 | +12.6886 | +12.9172 -12.9172

3| +11.9583 | +12.1465 -12.1465

4 | +10.7238 | +10.7443 -10.7443

5 | +10.4881 | +10.4780 -10.4183
Table 1: Eigenvalues of pattachl

k \/E Cc = 6, )\k CcC = 6, )\n+17k

1 | +21.4709 | +22.1004 -21.6228

2 | +17.7482 | +17.8817 -17.9628

3 | +15.0333 | +15.5960 -15.3273

4 | +14.8997 | +15.1071 -15.2066

5 | +14.3527 | +14.6567 -14.6572

k NG c=16, \x | c =16, Ant1-k

1 | +21.4709 | +22.1004 -21.6228

2 | +17.7482 | +17.8817 -17.9628

3 | +15.0333 | +15.5960 -15.3273

4 | +14.8997 | +15.1071 -15.2066

5 | +14.3527 | +14.6567 -14.6572

Table 2: Eigenvalues of pattach2

graph has n = 400727 vertices, and m = 3200440 edges. The
total number of triangles is 3686467 and average clustering
coefficient [12] is 0.4113. Ninety percent of the vertices are
contained in a subgraph with diameter 7.7.

We solved for the most positive 15 eigenvalues of A and
the associated eigenvectors. In Table 3 we list the top 15
eigenvalues. For each eigenvalue we find a vertex i for which
the associated eigenvector is maximized in magnitude too
demonstrate that the eigenvectors indicate high-degree struc-
ture. We report degree, d;, number of local triangles, t;,
and the associated local measure from Lemma 1.1, f(d;,t;),
for vertex i. Note that the vertices are not guaranteed to
be three hops away, and some of the assumptions in Theo-



k >\k 1 di ti f(d,, ti)
1 | 56.1956 1 | 2747 | 1550 | 52.9784
2 | 48.2261 3 | 2247 | 1475 | 48.0624
3 | 46.5151 2 | 2249 | 660 | 47.7178
4 | 42.3643 4 | 1413 | 1050 | 38.3385
5 | 40.9791 5 | 1282 | 3118 | 38.2991
6 | 39.9788 || 12 | 698 | 2297 | 29.8640
7 | 38.4942 || 23 | 482 | 2300 | 27.1133
8 | 37.7312 || 67 | 333 | 1946 | 24.7866
9 | 37.5905 || 52 | 367 | 1837 | 24.6497
10 | 37.3198 9 885 | 2266 | 32.3920
11 | 36.0873 || 26 | 469 | 1402 | 24.8002
12 | 34.7883 || 25 | 474 | 1669 | 25.5056
13 | 34.4431 || 42 | 412 | 1734 | 24.8323
14 | 34.4044 || 48 | 379 | 2005 | 25.2932
15 | 34.3602 4 | 1413 | 1050 | 38.3385

Table 3: Eigenvalues for amazon0312 graph.

rem 1.1 are not met for K > 1. On the left side of Figure 3,
we plot the eigenvector associated with the rightmost eigen-
value, ordered by breadth-first search away from the vertex
of maximal degree. We observe exponential decay as we
move away from this vertex. On the right side of Figure 3,
we plot the sparsity structure of the subgraph associated
with the vertices having 100 largest magnitude values in the
eigenvector. While there 828 nonzero entries (414 internal
edges) on this block, there are 21717 edges into the rest of
the graph. This structure is represented clearly by the ex-
tremal eigenvector because of a few high-degree vertices and
not because of a strong community.

4. CONCLUSION

We prove properties of extremal eigenvectors for adja-
cency matrices that are of high importance for understand-
ing the graph mining capabilities of methods that utilize
these vectors, and we verify these properties numerically on
a few simple examples. Specifically, the size of the asso-
ciated eigenvalue implies a community must have a certain
density to be detected using one of these eigenvectors. These
limitations may be very high for many of the communities
sought. In this venture we introduce some important analy-
sis approaches that are highly useful for understanding the
eigenspaces of any graph-associated matrix, and in turn are
of fundamental importance to the analysis any graph-mining
method utilizing numerical linear algebra.
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